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Abstract

Development of a _nite deformation elasto!plastic model for pressure sensitive materials is presented[ The
chosen model\ which has its roots in the MRS!Lade material model is in~uenced by recent developments[
The thermodynamic consequences of introducing non!associative yielding "both deviatoric and volumetric#
and hardening:softening characteristics are assessed[ The consistently linearized Algorithmic Tangent Sti}!
ness "ATS# tensor is presented[ This tensor is used in the constitutive driver as a key feature of the e.cient
iterative procedure for satisfying equilibrium in the case of stress "or mixed# control[

The chosen model is calibrated using data from experiments conducted in a Directional Shear Cell "DSC#\
which has been used extensively at the University of Colorado at Boulder to investigate the behavior of
pressure sensitive materials under deformations of large magnitude[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[
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0[ Introduction

A wealth of literature has been devoted to the development of plasticity models intended to
represent the response of granular materials under quasistatic loading[ The typical characteristics
to be incorporated in a realistic model are\ among others "a# an initial yield surface that depends
on all three stress invariants0\ "b# dilatancy characteristics that are of the {non!associative^ type\
"c# elasto!plastic coupling in the sense that the elastic moduli depend on the inelastic volume change\
"d# hardening!softening behavior that depend on the e}ective pressure and "e# the possibility for

� Corresponding author[ Tel[] 990 204 157 3324^ fax] 990 204 157 6874^ e!mail] jeremicÝpolaris[clarkson[edu
0 In the most ideal situation when the material is preconsolidated isotropically[
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non!homogeneous deformation "shear banding# that is promoted by dilatancy and softening[
Among the relevant literature\ we mention Lade "0877#\ Nova and Wood "0868#\ Pastor et al[
"0877#\ Desai et al[ "0875# and Pestana and Whittle "0884#[

A versatile model must be useful for a wide range of e}ective pressures\ including the very low
con_nement region in which case the shear stresses are also small[ The later situation is of great
importance in liquefaction problems and m!gravity environments[ The low gravity problem has
attracted some attention in recent years\ from both experimental viewpoint "Costes et al[\ 0876#\
as well as with regard to modeling "Sture et al[\ 0878#[ The small stress region poses particularly
challenging problems[ For example\ the sharp curvature in the meridian plane for the yield surface
requires a carefully designed strategy for integrating the constitutive relations[

Most plasticity models for pressure!sensitive materials have been proposed in a small defor!
mation setting\ although there is ample evidence of large strain situations in engineering practice[
In order to discern the properties under large amounts of shear\ without introducing large rotations
"like in the simple shear test#\ the Directional Shear Cell "DSC# was developed by Sture "0875#[
By using these experimental data\ uncertainties in the model related to large rotations can be
avoided[ On the other hand\ one might argue that a model that has been calibrated for DSC!
results may give poor results in the simple shear test due to possible inherent adequacies in dealing
with rotations[ Hence\ these types of test data should be complementary in a comprehensive
calibration e}ort[

In this paper we propose a new model\ which is an improved version of the MRS!Lade model
"Sture et al[\ 0878#\ in several respects[ As to the large strain environment both the hypoelastic
and hyperelastic formats are employed to provide a comparison[ Whereas the hypoelastic format
is classical in conjunction with pressure!sensitive materials "Nemat!Nasser\ 0871\ 0872#\ it appears
that very few attempts have been made to use the hyperelastic format[ One of those is by de Souza
Neto et al[ "0884#[ It is expected from other investigations on metal behavior that the di}erence
in performance is small for the present case of isotropic hardening\ and this assumption is indeed
con_rmed by the computational results in the paper[

The paper is organized as follows] in Section 1 we review the basic assumptions underlying the
hypoelastic format "employing McInnis rate# as well as the hyperelastic format of elasto!plasticity[
The proposed B!model is described in some detail in Section 2\ whereas integration issues "general
and speci_c to the B!model# are discussed in Section 3[ The paper is concluded by some com!
putational results in Section 4 relating to the DSC apparatus[

1[ Large strain elasto!plasticity with isotropic hardening

1[0[ Preliminaries

The classical approach to deal with large strains is to employ the hypoelastic!plastic format\
whereby the relations from the small strain theory are adopted with the di}erence that the ordinary
time rates of stress and strain are replaced by suitable objective rates[ Particularly in conjunction
with kinematic hardening\ it is well!known that the choice of stress rate is crucial in order to avoid
pathological behavior for large rotations "Nagtegaal and de Jong\ 0870#[ However\ the hypoelastic
format is conceptually questionable since it lacks a _rm thermodynamic basis[
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In recent years there has been a strong emphasis on the hyperelastic!plastic format\ which
employs the concept of a stress!free intermediate con_guration "denoted VÞ subsequently#[ The
constitutive relations are derivable within a thermodynamic framework\ which provides a possi!
bility to discern the thermodynamic admissibility of any particular explicit choice of model[

A summary of pertinent relations for both formats will be given subsequently[

1[1[ Hypoelastic!plastic format

Adopting the additive split of the spatial strain rate tensor dij\ we consider the generic tangent
relation

t�ij � oe
ijkl "dkl−dp

kl # "0#

where t�ij denotes an objective rate of Kirchho} stress t�ij "�Jsij # [ Here we choose\ for de_niteness\
the McInnis rate de_ned as

t�ij � t¾ij¦tikVkj−Vikti j
\ Vij � R¾ ik "Rkj # t "1#

where Rij is the actual material rotation[ Moreover\ oe
ijkl is the constant elastic sti}ness tensor

derived for small deformations[ It is de_ned in terms of the shear modulus G and the bulk modulus
Kb in the case of elastic isotropy "which will be assumed here#[

In the case of isotropic hardening\ governed by the scalar {hardening stress| Ka\ a � 0\ 1\ [ [ [ \ we
may de_ne plastically admissible states as those contained in the convex set B

B � "tij \Ka =F"tij \Ka # ¾ 9# "2#

where F is the yield function[ Upon introducing the plastic potential F�"tij \ Ka #\ we may de_ne
non!associative ~ow and hardening rules to obtain the following set of constitutive rate equations

t�ij � oe
ijkldkl−m¾oe

ijkl f�kl with f�kl �
1F�
1tkl

"3#

Ka � Ka "kb #\ k¾ b � m¾
1F�
1Kb

\ kb "9# � 9 "4#

where we have introduced internal variables1 kb[ Moreover\ no elastic!plastic coupling is included[
The plastic multiplier m¾ is determined from the loading conditions2

m¾ − 9\ F ¾ 9\ m¾F � 9 "5#

It is convenient to express the constitutive relations in the {rotation!neutralized| format\ which

1 The terminology from thermodynamics is used for convenience\ while realizing that it is strictly relevant only for
small strains "since the hypoelastic format is adopted#[

2 These are the KuhnÐTucker complementary conditions in the special case of fully associative theory\ de_ning the
Standard Dissipative Material "Halphen and Son\ 0864#[
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is obtained upon a pull!back of the relation "3# to a rotated con_guration VRN[ This is achieved
upon introducing the variables

tRN
ij �"Rik # ttklRlj \ dRN

ij �"Rik # tdklRlj "6#

whereby eqn "3# is replaced by

t¾RN
ij � oe

ijkl d
RN
kl −m¾oe

ijkl f�kl
\RN\ f�kl

\RN �"Rki # tdijRjl "7#

It is noted that oe
ijkl does not change during the rotation transformation due to the assumed

isotropy[ Moreover\ since the hardening variables are scalar quantities\ they remain unchanged
during rotation and\ hence\ eqn "4# does not change[ After integration of tRN

ij and Ka\ then a push!
forward to the spatial format using eqn "6# gives tij[

1[2[ Hyperelastic!plastic format

We propose the free energy density c\ which is de_ned in VÞ\ as follows

r9c"CÞe
ij \ ka # � r9ce "CÞe

ij #¦r9cp "ka # "8#

where ce "CÞe
ij # represents a suitable hyperelastic model in terms of the elastic right deformation

tensor CÞe
ij \ whereas cp"ka# represents the hardening[ It has been shown elsewhere\ e[g[ Hill "0849#\

that the pertinent dissipation inequality becomes

D � TÞijLÞ
p
ij¦s

a

Kak¾ a − 9 "09#

where TÞij is the Mandel stress and LÞp
ij is the plastic velocity gradient de_ned on intermediate

con_guration VÞ[
A di}erent form of eqn "09# may be employed in the case of non!isotropic\ e[g[ kinematic

hardening[
We now de_ne B as

B � "TÞij \ Ka =F"TÞij \ Ka # ¾ 9# "00#

When F is isotropic in TÞij "which is the case here# in conjunction with elastic isotropy\ we can
conclude that TÞij is symmetrical and we may replace TÞij by tij in F[

As to the choice of elastic law\ it is emphasized that this largely a matter of convenience since
we shall be dealing with small elastic deformations[ Here\ the Neo!Hookean elastic law is adopted[
The generic situation is TÞij � TÞij "UÞU	e

kl \ JÞe #\ where we have used the isochoric:volumetric split of the
elastic right stretch tensor as UÞe

kl � UÞU	e
kl "JÞe #0:2 [

The constitutive relations can now be written as

TÞij � TÞij "UÞU	e
kl \ JÞe #\ LÞp

ij � Fþp
ik "Fp

jk #−0 � m¾
1F�
1TÞij

� m¾MÞ ij "01#

Ka � Ka "kb #\ k¾ b � m¾
1F�
1Kb

\ kb "9# � 9 "02#
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where Fp
ik �"FÞe

li #−0Flk is the plastic part of the deformation gradient[ The plastic multiplier m¾ is
de_ned by the loading conditions formally given in eqn "5#[

2[ B!model for cohesionless granular material

2[0[ Preliminaries

In this section we give a review of the various concepts and characteristic features of the adopted
constitutive model "subsequently denoted the B!model#[ This model relies on the development
behind the so called MRS!Lade model "Sture et al[\ 0878#[ There are many di}erences between
the MRS!Lade model and the B!model " for small strains#[ In particular the deviatoric trace of the
yield surface in the B!model is based on the work of Krenk "0885#[ The shape of the deviatoric
trace depends on the e}ective pressure in a realistic fashion\ which was not included in the MRS!
Lade model[ The B!model is a single surface model\ with uncoupled cone portion and cap portion
hardening[ Special attention was given to the very low con_nement region\ where the yield surface
was shaped in such a way as to mimic recent3 higher friction angle _ndings for that stress region[

The present generalization to the large strain setting is quite trivial from the point of view of
describing yield and potential surfaces[ The true stress sij is replaced by the Mandel stress TÞij[
However\ since the yield function is isotropic\ hardening is of isotropic type and isotropic elasticity
is assumed\ it turns out that the invariants of Tij become equal to the invariants of the Kirchho}
stress tij[ Hence\ in the various functions involved in describing the constitutive relations\ we shall
employ the invariants of tij de_ned as

p � −
0
2

tkk ^ q �X
2
1

sij sij ^ cos 2u �X
2
1

sij sjk ski

"sij sij #
2
1

^ sij � tij−
0
2

tkkdij "03#

Stresses are chosen as positive in tension[ The de_nition of Lode|s angle u in eqn "03# implies that
u � 9 de_nes the meridian of conventional triaxial extension "CTE#\ while u � p:2 denotes the
meridian of conventional triaxial compression "CTC#[

The various relations of the B!model are listed in Table 0 for brevity and transparency[ In the
following subsections\ we discuss these relations in some further details[

2[1[ Yield and failure surfaces

The analytical form of the yield surface\ which is identical to the failure surface in its extreme
position corresponding to the peak value hpeak of the mobilized friction coe.cient h\ is given in
Table 0[ It is a {bullet!shaped|\ three invariant surface with its apex located at the origin of stress
space for a cohesionless granular material[ Apart from the apex\ the surface is completely smooth4\

3 Micro Gravity Mechanics tests aboard Space Shuttle[
4 In the sense that the gradient is continuous everywhere[
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Box 0
Analytic relations for the B!model

0[ Yield function
F"p\ q\ u^ h\ pc# � q1−Fdev"p\ u^ pc#Fmer"p\h^ pc#

Fdev"p\ u^ pc# � 0X
1
2

cos 00
2
arccos"g"p# cos"2u##11

−1

g"p^ pc# �
0
1

¦
0
p

arctan 0
−a"p−b"pc−pt##

pc−pt 1 g $"9\ 0#

Fmer"p^ h\ pc# � Fell "p^ pc#Falt "p] h#

Fell "p^ pc# � R−
"p−pt#1

"pc−pt#1

Falt "p^ h# � 0
"p−pt#"b0hinit¦h"hinitp¦h"−p¦pt###

b0−hp¦hinitp¦1hpt−hinitpt 1
1

1[ Hardening functions

h"kcone# �

dhresk
1
cone¦

d"hpeak−hres#hstartk
1
peak

hpeak−hstart

¦kcone"ehpeak¦1d"hpeak−hres#kpeak#

ekcone¦dk1
cone¦

d"hpeak−hres#k1
peak

hpeak−hstart

pc "kcap# � pc\900¦"kcap#0:r1
2[ Plastic potentialÐ~ow rule

F�"p\ q\ u^ h\ pc# � q1−Fdev"p\ u#F�mer"p\ h\ pc#

F�mer"p\ h\ pc# � nFmer"p^ h\ pc#

3[ HardeningÐsoftening rules

k¾ cone �
Scone"p#
cconepa 0

p−pt

pref 1
−l

TÞijLÞ
p
ij^ Scone"p# �

0
1

¦
0
p

arctan 0
−as "p−bs "pc−pt##

pc−pt 1
k¾ cap �

Scap"p#
ccappa 0

pa\9

pref1
−r

TÞijLÞ
p
ij^ Scap"p# �

0
1

¦
0
p

arctan 0
as "p−bs "pc−pt#

pc−pt 1

even at the transition between the {cone| and {cap| parts associated with dilatant and contractant
behavior\ respectively[ The functions Fdev and Fmer control the shape in the deviatoric and meridian
planes\ respectively[
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Fig[ 0[ Meridian trace of yield\ ultimate or potential surface[

Fig[ 1[ Evolution of deviatoric trace of yield surface with the Lode|s angle u\ for di}erent values of shape parameter g\
which changes along the mean stress axes[
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Fig[ 2[ Yield surface in principal stress space "sahown in extended form since for ordered principal stresses s0 −s10 − s2

only _rst sextant is valid#[

The meridian trace of the yield surface\ which looks typically as shown in Fig[ 0\ is de_ned by
the two functions Fell and Falt[ The function Fell de_nes an elliptic trace\ whereas the primary role
of Falt is to provide the appropriate behavior for low con_nement pressures[ In particular\ Fig[ 0
shows that the initial value5 of the internal friction angle is de_ned by the value hinit[

As to the deviatoric contours of the yield surface\ de_ned by the function Fdev in Table 0\
they are based on the developments by Krenk "0885#[ The {shape function| g"p\ pc# de_nes the
{triangularity| of the deviatoric trace along the hydrostatic axis[ For low con_nement pressures the
shape is almost triangular\ whereas it becomes close to circular for very large values of p\ as shown
in Fig[ 1[ In order to accomplish this physically realistic result\ g"p\ pc# is designed such that
g"p : pt ^ pc # : 0 whereas g"p :pc ^ pc # : 9[

2[2[ Flow and hardenin` rules

The ~ow rule is of the non!associative type and is de_ned by the plastic potential F� as given in
Table 0[ It follows that the non!associativity is restricted to the volumetric response\ which is
controlled by the scalar n[ Clearly\ associative ~ow is retrieved when n � 0[

The hardening functions h "the mobilized function# and pc "the isotropic consolidation pressure#
are functions of the internal variables kcone and kcap\ respectively\ as given in Table 0 and in Fig[ 4[
In the thermodynamic setting\ h and pc would be denoted the dissipative stresses[ In order to
complete the model\ we need to de_ne the hardening rules in terms of rate equations that de_ne
the evolution of h and pc\ which are given in Table 0[

The notion of {cone| and {cap| may seem unwarranted\ since this model employs a single yield
surface[ However\ it is convenient to distinguish the cone and cap regions by the maximum value
of q in the meridian plane\ Fig[ 0[ The corresponding value of isotropic pressure de_ning the
boundary between the two regions is simply obtained as p � z1:1"pc−pt # [

In order to control the hardening of the cone and cap portions separately\ the {switch| functions
Scone"p# and Scap"p# were introduced in the hardening rules[ These are chosen as the regularized

5 At the apex[
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Fig[ 3[ Evolution of yield surface with the mobilized friction parameter h and cap parameter pc[ Shown in meridian
plane[

Fig[ 4[ Cone and cap hardening functions[

Fig[ 5[ Plot of switch functions Scone"p#\ Scap"p# for as � 099[9 and bs � 9[696[
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Heaviside functions\ Table 0\ whose steepness is controlled by the constant as\ while the position
of the switch is controlled by the constant bs[ The typical behavior of Scone"p# and Scap"p# is shown
in Fig[ 5[

3[ Aspects on integration of constitutive relations

3[0[ Incremental evolution equations

The ~ow rule from eqn "01# can be integrated to give

n¦0Fp
ij � exp"Dmn¦0MÞ ik #nFp

kj "04#

and by using multiplicative decomposition of deformation gradient we obtain

n¦0FÞe
ij �

n¦0FÞe\tr
ik exp"−Dmn¦0MÞ kj # with n¦0FÞe\tr

ik � n¦0Fim "nFp
mk #−0 "05#

The elastic deformation is then

n¦0CÞe
ij �def"n¦0FÞe

im #T n¦0FÞe
mj � exp"−Dmn¦0MÞ T

ir # n¦0CÞe\tr
rl exp"−Dmn¦0MÞ lj # "06#

By recognizing that the exponent of a tensor can be expanded in Taylor|s "MacLaurin|s# series
"Pearson\ 0863#

exp"−Dmn¦0MÞ lj # � dlj−Dmn¦0MÞ lj¦
0
1
"Dmn¦0MÞ ls # "Dmn¦0MÞ sj #¦ [ [ [ "07#

we obtain

n¦0CÞe
ij �

n¦0CÞe\tr
ij −Dmn¦0MÞ ir

n¦0CÞe\tr
rj −Dmn¦0CÞe\tr

il
n¦0MÞ ij "08#

The proposed algorithm uses MacLaurin|s series expansion of integrated deformation tensors
rather than the spectral decomposition\ which is widely described in the literature "Simo\ 0881#[
Restriction posed by the use of spectral decomposition to isotropic yield criteria6 is being removed[

In the limit\ when displacements are su.ciently small\ the solution "08# collapses to a small
deformation elastic predictor plastic corrector equation in strain space

n¦0oij �
n¦0otr

ij −Dmn¦0M ðfaMAŁ ij "19#

The hardening rule "01# can be integrated to give

¦0ka � nka¦Dm
1F�
1Ka bn¦0

"10#

The incremental problem is de_ned by eqns "08# and "10#\ the constitutive relations

6 And especially the enforcement of collinearity between eigen!directions of elastic and plastic deformation tensors[
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n¦0SÞIJ � 1
1W
1CIJ bn¦0

"11#

n¦0Ka � −
1W
1ka bn¦0

"12#

the KuhnÐTucker "KT# conditions

Dm ³ 9^ n¦0F ¾ 9^ Dmn¦0F � 9 "13#

This set of nonlinear equations will be solved with a Newton type procedure\ described in the
next section[

3[1[ The inte`ration al`orithm

The elastic predictor\ plastic corrector equation

n¦0CÞe
ij �

n¦0CÞe\tr
ij −Dm"n¦0MÞ ir

n¦0CÞe\tr
rj ¦n¦0CÞe\tr

il
n¦0MÞ lj # � n¦0CÞe\tr

ij −Dmn¦0Zij "14#

is used as a starting point for a Newton iterative algorithm[ In the previous equation\ we have
introduced tensor Zij to shorten writing[ The trial right elastic deformation tensor is de_ned as

n¦0CÞe\tr
ij �"n¦0FÞe\tr

ri #T "n¦0FÞe\tr
rj # �"n¦0FrM "nFp

iM #−0 #T "n¦0FÞrS "nFp
jS #−0 # "15#

We de_ne a tensor of deformation residuals

Rij �
CÞe

ij

current
−

"n¦0CÞe\tr
ij −Dmn¦0Zij #

Backward Euler
"16#

Tensor Rij represents the di}erence between the current right elastic deformation tensor and the
Backward Euler right elastic deformation tensor[ The trial right elastic deformation tensor
n¦0CÞe\tr

ij is maintained _xed during the iteration process[ By applying _rst order Taylor series
expansion to eqn "16# and solving for dCÞe

pq one gets

dCÞe
pq �"Tmnpq #−0 0−Rold

mn −d"Dm#n¦0Zmn¦Dm
1n¦0Zmn

1Ka

d"Dm#Hab

1F�
1Kb1 "17#

where it was used that

dKa �
1Ka

1kb

dkb � −d"Dm#
1Ka

1kb

1F�
1Kb

� −d"Dm# Hab

1F�
1Kb

"18#

Tmnpq � dpmdnq¦Dm
1n¦0Zmn

1TÞpk 0CÞe
sq1

−0

TÞsk¦
0
1

Dm
1n¦0Zmn

1TÞij

CÞe
ik LÞ e

kjpq "29#

By using a _rst order Taylor series expansion of a yield function and solution "29# incremental
inconsistency parameter d"Dm# can be obtained as
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d"Dm# �
oldF−Fpq "Tmnpq #−0Rmn

Fpq "Tmnpq #−0Zmn−DmFpq "Tmnpq #−0 1Zmn

1Ka

Hab

1F�
1Kb

¦
1F
1Ka

Hab

1F�
1Kb

"20#

where

Fpq �
1F"TÞij \ Ka #

1TÞpn

"CÞe
sq #−0TÞsn¦

0
1

1F"TÞij \ Ka #
1TÞmn

CÞe
mkLÞ

e
knpq "21#

In the limit\ for small deformations\ isotropic response\ the increment inconsistency parameter
d"Dm# becomes

d"Dm# �

oldF−"nmnEmnpq # 0dimdnj¦Dm
1mmn

1spq

Epqij1
−0

ðFS0

Rold
mn

nmnEmnpq 0dmpdqn¦Dm
1mpq

1sij

Eijmn1
−0

n¦0mmn¦
1F
1Ka

Hab

1F�
1Kb

"22#

Upon noting that residual Rpq is de_ned in strain space\ the increment inconsistency parameter
d"Dm# compares exactly with its small strain counterpart "Jeremic� and Sture\ 0886#[ This small
deformation counterpart is used with the hypoelastic based integration algorithm[

After some tensor algebra "Jeremic�\ 0886# we are in a position to write the ATS tensor LÞ ATS
ijkl as

LÞ ATS
knvt � LÞ e

knpqPÞpqvt "23#

where

PÞpqvt �"Tmnpq #−0 0dmvdnt−
Fab "Tvtab #−0

G 0Zmn−Dm
1n¦0Zmn

1Ka

Hab

1F�
1Kb11 "24#

and LÞ e
knpq is the elastic tangent sti}ness tensor "Simo and Taylor\ 0880#[ The algorithmic tangent

sti}ness tensor LÞ ATS
knvt is used in building _nite element sti}ness matrices and provides for fast

convergence of the Newton iterative scheme at the global level[

4[ Application to the directional shear cell apparatus

4[0[ Computational results

The DSC apparatus was extensively used in the late 0879s at the University of Colorado at
Boulder[ For example McFadden "0877# has used DSC apparatus in order to investigate shear
behavior of various sands[ Next we are presenting our numerical modeling of some of his exper!
imental tests[

The _nite element model used in numerical modeling of a DSC test is presented in Fig[ 6[ It
consists of four linear brick elements[ Plain strain conditions are provided by restraining out of
plane displacements[ Loading is divided in two stages[ The _rst stage comprises isotropic com!
pression in target con_nement state "in this case p � 099[9 and p � 079[9 kPa#[ The second stage
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Fig[ 6[ Numerical setup of a Directional Shear Cell test[

is a shear loading until instability occurs "instability in the experimental test\ numerically we can
follow the specimen beyond limit point#[ It is not clear if the instabilities in DSC experiments "loss
of control over loading process# were due to the bifurcation phenomena inside the specimen or to
the global rotation of the specimen[ Since DSC is a load controlled device\ only shear deformation
of gxy ¹ 2[4) was reached in the laboratory experiment[

Figures 7 and 8 show numerical modeling of particular tests K903[4Ð29 and K903[4Ð29[ Quite
good agreement with the experimental test is obtained[ We show only numerical modeling up to
4) shear deformation to show the comparison between numerical and experimental tests[

The large shearing deformation extension of the previous test is presented in Fig[ 09[ The post!
peak region of the response curve is leveled for shear strains up to 29) but then starts to harden[
Hardening is not a signi_cant one and can be expected for such high shear deformation[

Figure 00 shows a deformation pattern at shear deformation of g � 049)[ Considerable dis!
tortion can be observed[ Large change of shape of the specimen can be used to explain the slight
hardening in the post peak region of the response curve from Fig[ 09[ Material inside the specimen
moves quite a bit\ thus creating an extra resistance to shearing[ This extra resistance is globally
observed as slight hardening in the response curve[

5[ Concluding remarks

In this paper we have presented a new material model which is designed for large strain
hyperelasto!plastic computations[ The model features three analytical surfaces\ representing yield
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Fig[ 7[ Numerical modeling of a test K903[4−29[ Shear stressÐaxial strain curves[
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Fig[ 8[ Numerical modeling of a test K903[4−29 and K903[4−29[ Volumetric strainÐaxial strain curves[
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Fig[ 09[ Fig[ 09[ Large deformation extension of a test K903[4−29[

Fig[ 00[ Typical deformation pattern for a large deformation numerical simulation of a shear test[



B[ Jeremic� et al[:International Journal of Solids and Structures 99 "0887# 999Ð999 06

limit\ ultimate surface and plastic potential[ Deviatoric trace of all three surfaces is pressure
sensitive\ having an almost triangular shape "Rankine yield criteria# for low con_nement stresses
and almost circular shape for high con_nement stresses[ Hardening and softening laws are of non!
associate type\ dependent on plastic work[ Separation of hardening or softening for cone and cap
portions of yield:potential surface is provided by means of switch function[

The numerical algorithm used for integrating hyperelasto!plastic constitutive relations utilizes
Taylor|s series expansion of elastic deformation tensor CÞe

ij [ This approach removes some of the
restrictions posed by the spectral decomposition type of algorithms\ widely used in literature[

A set of comparisons between DSC test results and numerical predictions were presented[ These
comparisons show favorable characteristics of the material model and the integration algorithm
for large deformation numerical simulations on geomaterials[
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